IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Bound-state asymptotic estimates for window-coupled Dirichlet strips and layers

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1997 J. Phys. A: Math. Gen. 30 7863
(http://iopscience.iop.org/0305-4470/30/22/023)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.110
The article was downloaded on 02/06/2010 at 06:05

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/30/22
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. Ger30 (1997) 7863-7878. Printed in the UK PIl: S0305-4470(97)85881-7

Bound-state asymptotic estimates for window-coupled
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Abstract. We consider the discrete spectrum of the Dirichlet Laplacian on a manifold consisting

of two adjacent parallel straight strips or planar layers coupled by a finite numloémwindows

in the common boundary. If the windows are small enough, there is just one isolated eigenvalue.
We find upper and lower asymptotic bounds on the gap between the eigenvalue and the essential
spectrum in the planar case, as well as o= 1 in three dimensions. Based on these results,

we formulate a conjecture on the weak-coupling asymptotic behaviour of such bound states.

1. Introduction

There has recently been some interest in Laplacians on strips or layers. Such a system is
trivial when the manifold is straight and the boundary conditions are translation-invariant, so
there is a natural separation of variables. On the other hand, the spectral properties become
non-trivial if the transverse modes are coupled, which can be achieved, e.g., if the manifold
is bent, locally deformed, or coupled to another oné,[BE, BGRS, BTV, EV1, EV2].

The interest stems from two sources. On the physical side, such operators with
Dirichlet boundary conditions are used as models of various mesoscopic semiconductor
structures. The corresponding solid-state literature is rather rich, see [BEY]Hor
some references. On the other hand, bound states in systems with open geometries also
pose mathematical questions such as the weak-coupling limit, validity of the semiclassical
approximation, resonance scattering in such structures, etc. Some of their properties can
be seen numerically ETV] while analytical proofs are lacking. Recall also that a closely
related problem concerns Neumann Laplacians, namely the existence of trapped modes in
acoustic waveguides [ELV, DE].

In a recent paper [EV1] we studied a pair of parallel Dirichlet strips of widihsd,
coupled laterally through a window of a widthz 2n the common boundary; we have shown
that there are positive;, ¢, such that the gap between the ground state and the threshold
of the continuous spectrum can be estimated as

2
—cra* < e(a) — (Z) < —cpa® (1.1

for any a sufficiently small. The numerical result of V] suggests that the true
asymptotics are of the same type, but proving this assertion and finding the coefficient
in the leading term remains an open problem.
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The aim of the present paper is to generalize the above inequalities to the case of a finite
number of connecting windows and to a higher dimension. In section 2 we shall prove the
bounds for a pair of strips witlv windows. In section 3 we formulate the analogous problem
for two layers and prove two-sided asymptotic bounds for a single window shrinking to a
point. The proofs rely in both cases on variational estimates and follow the same basic
strategy as in [EV1]. On the other hand, the existence of multiple windows or the change
in dimension require numerous modifications, which prompts us to present the argument in
sufficient detail.

The upper and lower asymptotics bounds we will derive are of the same type in each
case, differing just by values of the constants. We are convinced that ground state has an
asymptotic expansion and its lowest-order is given by functions analogous to our bounds.
This conjecture is formulated in section 4. At the same time, our present method does not
allow us to squeeze the bounds, or even to come close to the true values, as remark 2.2
below illustrates.

2. N windows in dimension two

Consider a straight planar strip := R x [—dy, d1]. Given finite sequence§ = {x})_,

of mutually distinct points of ther-axis andA = {a}})_; with ax > 0, we denote
Wy =[xk — ak, x¢ + a] and setW = [ J;_; Wi. Then we defineH (d1, d>; W) as the
Laplacian onL?(%) subject to the Dirichlet condition at= —d,, d; as well as at th&®\ W

part of thex-axis; this operator coincides with the Dirichlet Laplacian at the strip with the
appropriate piecewise cut (see figure 1) defined in the standard way [RS4, section XIII.15].
Following the notation introduced in [EV1] we pdt:= maxd;, d2} and D :=d; + dy. If

d1 = dy, the operator decomposes into an orthogonal sum with respect tofhdty; the
non-trivial part is unitarily equivalent to the Laplacian fR(X, ), whereX, = R x [0, d],

with the Neumann condition at window paft of the x-axis and Dirichlet at the remaining
part of the boundary; we denote it B/(d; W). If the specification is clear from the context,
we will often denote the operator in question simplyfas

Y

dy X1 x2 X3

d2 . . o 5
2(,11 202 2613

< <

Figure 1. Window-coupled planar waveguides.

We need a quantity to express the ‘smallness’ of the window set. We define

N N
TOV) = Wil =2 a?. (2.1)
k=1 k=1

Then the result of [EV1] generalizes to the present situation as follows.

Theorem 2.10esd H (d1, do; W)) = [(/d)?, o0). The discrete spectrum is contained in
((m/D)?, (r/d)?), finite, and non-empty provide® # @. If 1(WV) is sufficiently small,
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odisc(H (d1, do; W)) consists of just one simple eigenvala@V) < (z/d)? and there are
positive c1, ¢, such that

2
— el W2 < ea) — (’;) < —cl V)2 2.2)

holds for anyl (W) sufficiently small.

Proof. (a) The upper boundIn the symmetric casej; = d», the trial function will be
chosen asy = F + G, where

F(x,y) = fix)x1(») (2.3)
with
F1(0) 1= MaX| X —ayxyray] (X), € KTt grelmavman}
and
N
Gx,y) =Y Gilx,y) (2.4)
k=1
with
G, y) = 2B s @) coa(’w‘_x"))Rk(y) (2.5)
W 2ay,
where|W| := 23"V, &, and
Ry =[5 v el0.zd) (2.6)
kYY) = :
2(1 — y/d)e ™/ y €[3d.d]

for k = 1,2,...,N. As beforey,(y) = /2/dsin(rny/d), n = 1,2,..., denote the
‘transverse’ eigenfunctions—not to be confused with the indicator functignof a set
M. Note that as long as we work with trial functions ¢f(H), the window smoothing
employed in [EV1] is not needed (cf [RS4]).

The functionalL () := (Hv, ¥) — (n/d)?||¥||?> can be expressed as

2 N Xx+a
_ 2 2 (T 2 o7 E o
L) = [1¥:ll” + I1Gyl (d) Gl Zd\/;;/; G (x,0) dx. (2.7)

k— Ak

Since f,, G, have disjoint supports, we havgy, |2 = [Fl?> + Y1 |Gr.. |13 where
Gi.x ‘= 3,G;. Thekth term of the last sum equaﬁnzaklwrzlleHiz(o 4 and

Ay d Ay _ . ay
”Rk”EZ(O,d) = ; + (6 - j'[) e d/2a < 7(1—}— 81)
for anye; > 0 andg; sufficiently small. Obwouslyﬂ,fxﬁaA Gi(x,0) dx = (8/m)ma?W|1,

and furthermore, a bound quk,yHZ follows from

b4 2 b4 b4
R |12 = (- e o T
” k||L2(O,d) 4ak <d 4ak> 4(,lk
for @y < wd/8, which means thalG,,l|?> < = Y, n?a?|VW|~2. Now we can put these
estimates together usirjgF, ||> = «; neglecting the negative term(r/d)?||G||?, we arrive
at the inequality

6\/2 77kk 15

L) <k — @ 2w +7 (2+81)Z|W|2.
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The sum of the last two terms on the right-hand side is minimized—l@7/nd3(2 +
81)) Dk ak To conclude the argument, we have to estimate the trial function rigriit
from below. The tail part |$|1/f||x€R\W = «~1, while the window contributes by

N 23

nya
W 12ey < 20F 120y + 201G 120y = Iy — x1 4+ ay + axl + 42 |VkV|k2 IRel1Z20.4)

so ||y ]I? > (1—e2)« 1 holds for anye, > 0 provided|WV)| is sufficiently small. Minimizing
the above-obtained estimate bty )/||y||? over, we find

Ly) . _1< 2 ¢ 2>2
i < "4 ey 2% 28)

which yields the upper bound in (2.2) fak = d,. The extension to the non-symmetric
case proceeds as fof = 1; the trial function is chosen in the above form for the wider
channel, while in the narrower one it is given by (2.4) rescaled transversely.

Remark 2.2.The bound can be improved, for instance, by replacing the factorized form (2.5)
by a series, whose terms will be products of the trigonometric basis in the window with the
functions Ry ,(y) decaying as exXp-rwny/2a;} abouty = O (in the above estimate we used
just the first term of such a series). However, the gain is not large. To illustrate this fact, take
N =1 andd = . The use of the series leads then to the upper b@Rmgr)*, improving

the coefficient by(r2/8)? ~ 1.52. A comparison with the numerically determined ground
state [EéTV] shows that the true asymptotic behaviour shouldrbé2.23a)*, so thec;
obtained is still two orders of magnitude wide of the mark. The reason is obviously that
the wavefunction is affected by the window outside the transverse ‘window strip’ as well.

Before proceeding to the lower bound, let us state some auxiliary results.

Lemma 2.3Let J[¢] := fj(¢/(z)2+m2¢(r)2) dr for ¢ € C?(a, b) with ¢(a) = ¢, (a fixed
number). Givenng > 0, there iseg > 0 such that

J[¢] = otomc (2.9)
holds for allm > my.

Proof. The mimimum is obviously reached wiyf(b) = 0. The corresponding Euler’'s
equation is solved byp(r) = die™ + do€", whered, = c,(e* + ¢'@=2)~1 gnd
dp = d1e7?". Sincem~1c;2inf J(¢) > 0 for anym > my, it is sufficient to check that (2.9)
remains valid asn — oo; evaluatmg the functional fogpy we find lim,,_, o, J(¢) = mc3

]

Lemma 2.4 Suppose thap minimizesJ[¢] := ff” (¢'(1)? + p2¢(1)?) dr for positivea, p
within C?(a, 2a) with the boundary conditiog (a) = c,; then

9 (2a)| < 2fcqle?. (2.10)

Proof. Assume for definiteness that > 0. Again by the symmetry argument already
mentioned,¢’(2a) = 0, and its explicit form isp(¢t) = ¢, coshp(2a — t)/ coshpa, which
yields ¢ (2a) < 2c,e 7. O

For the sake of completeness we also reproduce the following assertion, the proof of
which is given in [EV1].
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Lemma 2.5Let ¢ € C?[0, d] with ¢(0) = g and¢(d) = 0. If (¢, x1) = 0, then for every
m > 0 there isdg > 0 such that

d 2 a 2 d 2
/¢’(r)2dt+<m> / ¢(z)2dt—<”> / s> PP (211
0 a 0 d 0 a

holds for alla sufficiently small.

(b) Proof of theorem 2.1, continuedlhe lower bound is again the more difficult of the
two; however, we may restrict ourselves to the symmetric case alone, because by inserting
an additional Neumann boundary into the window we get a lower bound, and therefore in
what follows we consider the spectrum Hf = H(d; W).

We begin with a simple observation that it is sufficient to estimiat¢) := (Hyr, ¥) —
(r/d)?||¥||?> from below for allreal v of a core ofH, say, allC?>-smoothy € L3(X,)
satisfying the boundary conditions, sinBlecommutes with complex conjugation. The main
difficulty caused by the existence of multiple windows is that we are no longer allowed
to restrict ourselves to trial functions symmetric with respect to the window centres. The
strategy we employ is at the start to split off a part of the kinetic-energy contribution to the
functional, say,%||1px||2, which at the end will be used to mend the problems coming from
the asymmetry, i.e. we begin by estimatibg(y) := L(y) — 211||1px||2.

A trial function of the indicated set will be written in the form of a Fourier series

Vx,y) = Z n(X) Xn () (2.12)
n=1

with smooth coefficients, (x) = (¥ (x, -), x»), Which is uniformly convergent outside the
windows,x ¢ WW. We split the lowest transverse-mode coefficient further by setting

N
fh=a-)Y f (2.13)
k=1
where

(2.14)

- {Ck(x) — oy x € [xk — 2ay, x; + ai]
=

0 otherwise

with a; := c1(xx — 2ay), i.e. each one of the functionﬁ vanishes at the left end-point of
the appropriate extended window; in contrast to [EV1] we double only the left half of the
window. Writing the full trial function as

Y(x,y) =F(x,y)+Gx,y) F(x,y) == fi(x)xa(y) (2.15)
we can cast the reduced energy functional in the form
3 7\? ul T |2
L = 2|2 2_(Z 2_ 2[/ 0) dx. 2.16
o) = I¥el® + Gy | (d> I1G1° =2 25 g ], G O (2.16)

Contributions to (2.16) from different parts of the stiib. will be estimated separately.
The out-of-window part consists of the sets

wy ={(x,y): x < x1—ai}
wp ={(x,y) ! X1+ a1 <X < x— g k=2,...,N

oys1 ={(x, ) x 2 xy +ay}.
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The expansion (2.12) yields

1 7\2
A2+ 16,15, - (d) IGII2,

o0 2
:iZ/c(x)zdx—i-Z( )(nz—l)/ cu(x)? dx

n=1 n=1
and therefore

1 T 2 o0
AVl + Gy 12, - (d) IGIZ, > uo;ncn(xk — @)’

with some g > 0 follows from lemma 2.3 (fow = x; — @ andk = 2,..., N). The
same inequality fok = 1 is derived as in [EV1]; for the right tail we use just the fact that
the expression is positive so we can neglect it. Siige= G, inside the (left extended)
windows, we arrive at the bound

1 2
Lo(¥) > S l1¥liigw + Z IIG e, + 1Gy 1 e, — IIGllxewk

o T |2
—l—uo;ncn(xk —ak)2—2akd\/;/Wk G(x, 0) dx}. (2.17)

Our next goal is to estimate the contribution & .||? from the extended windows,

E = [xx — 2a;, x; + a;]. In contrast to the cas& = 1, however, even the lowest-
mode projection ofG may not vanish at the right end-points of these intervals, so the
inequality [EV1, equation (5.6)] has to be modified. Fortunately, it is sufficient to change
the coefficient; if a functiorG : ¥, — C?%(X,) vanishes forx = x; — 2a;, the inequality
[EV1, equation (4.2)] in combination with a symmetry argument imply

T
1G 12 ee, > <6a ) 1G 12, - (2.18)

To use this result we split the function by singling out the projectiorGobnto the first
transverse mode

N
G(x,y) =Gi(x,y) + Ga(x,y)  Gilx,y») =Y fi)xa(y).  (2.19)

We have

2||Wx||xeg,(\WA 4IIG ||xewk 2IIG ||xegk ZIIGUIIXE& 2||G2x||xeg,(
and therefore

7\? 2
Lo(y) > ||1ﬁx||x¢g + E ”GZx”ngk +1G 2w, — 7 1G Izem,
> T |2
+uo ,;zz ney (xx — ag)? — Zakg p /Wk G(x,0) dx

1
(&) 16 | (220
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with £ 1= U,]{Vzl &. To proceed further we split the functi@, in the kth extended window
asGa(x, y) = G(x,y) + T'(x, y), where

L(x,y) =Y cnlxe — 200 xa ().
n=2

The second part is independent .of while the first vanishes at the left end-point, so
G, = G, may be estimated by means of (2.18) and the Schwarz inequality as

2 2
1GaclPe, > (”) 1G 112, > (”) IGIIZ,
6a; 6ay

1/ = 2 7 \?
>(=— ) 1G5 — [ =— ) T2 2.21
() 16ai, - (&) e, @.21)

where we have denoted; := & x [0, a;]. To make use of the last estimate we have to
find an upper bound 0ﬂ1F||§2k. To this end we note the following.

(i) Instead of assuming, € C?, the lower bound can be sought in a wider classjof
with piecewise continuous coefficients.

(ii) On the other hand, we may restrict ourselves to thgsehich satisfy forx € &\ Wi
andn > 2 the inequality

COSI’((n/d)«/n2 —1(x — x; + Zak))
cosh((way/d)v/n? — 1) ’

To see this we split the trial function in analogy with [EV1]:

Yx, ) — (X)) xa(y) x € &\ Wi

Y(x,y) otherwise.

len (O] < ¢X(x) := |eq(a)l

(2.22)

Y(x,y) =

The basic expressioh(y)/||¥||? can be then rewritten as

L) = @/d2IF 12 + Y0y feom [ea 02 dr + (Gr/d)v/n? = 1)°cy(x)?] dx
19112 + 31 fen, @02 d

whereL(¥) := f2+(|'&x|2+ [¥y1?) (x, y) dx dy. We may assume only thosefor which the
numerator is negative; the part of its last term corresponding to the ‘window neighbourhoods’
is minimized by the hyperbolic function®* of (2.22) (see the proof of lemma 2.4). It
follows that replacinge, (x)? by min{c,(x)?, c®(x)?} we can only get a larger negative
number, while the positive denominator can only be diminished.

To estimate the norm df restricted to2,, we adapt again the argument of [EV1] and
divide the series into parts referring to small and large values ahd respectively employ
the smallness of x, | [0, a]|| and the bound (2.22). This yields

ay 00 2
TS, = / dx / dy (ch[zak]xnm)
Ek 0 n=2

[a,1]+1

ax 2
<o [(X aladnm) dar+

n=2
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ay o0 2
voo [ X akalum) @

2<n=[a; 42

[a71+1

a la71+1
< 24ak( > n*lcn[ak]zfo Xn(9)? dy)( > n>

n=2 n=2

o0

+24ak< Z ncn[ak]z/(; k Xn(y)z dy>

2<n=[a; ]4+2

00
% < Z n—le—(erak/d)«/nz—1>

2<n:[a;1]+2

wherec,[jai] := ¢, (xx—jax) and [] denotes the entire part; in the the last step we have used
the boundc,[2a¢]| < 2|c,[a]| exp{—(wax/d)~/n? — 1} which follows from lemma 2.4. In
analogy with [EV1], this implies the existence of a positi¥ge such that

T2, < Ceaf Y nea (o — an)®. (2.23)
n=2

From now on we again consider continuous coefficient functions. By equation (2.21) we
have

1 [o¢]
5162 Peg, + 1o Y nea(oe — ax)®
n=2

2 2 o0
T 2 é T 2 2
>5( ) 16515~ (g, ) 1P+ o Yt —ao

for an arbitrarys € (0, 1]; if we choose the latter sufficiently small, the sum of the last two
terms is non-negative for eaéh=1, ..., N due to (2.23), so

1 N 7\? m?
Lo(¥) > 51 lge + Z{ncyniem - (d) IG12 o, + —5 1G213,
k=1 ay

T [2 1/ 7 \?
— 2w S 0)dx + = — 2 2.24
akd\/;fwkc(x’ ) +2(661k> ”Gluxegk} ( :

where we have denoted := L +/s.
Next we express the first term in the curly bracket using the decomposition (2.19), the
properties of the transverse base and integration by parts:

T |2 o
1Gy e, = IGLyl2am, + 1G2y120m, =251/ = | fe(x)G(x,0) dx.
avd )y,

As in [EV1] we estimate the last term by the Schwarz inequality, substitute in (2.24), neglect
IG1yl2c), as well as

(7 +/2)

n? 2 2
T, 1G1llfcs, — — 2z 1G1yllem,
k
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which is positive fora, sufficiently small, obtaining

1 N m? 7\?2
Lo(¥) > 5V lge + Z{ncz,ynfewk + 5 1G2l13, - () IGZew,
k=1 ay d

7?2 T |2
—7||G(-,0)||§€Wk _Z“kd\/;/m G(x,0) dx}. (2.25)

By lemma 2.5, the sum of the first three terms in the curly bracket is bounded from below

by dk/ak||G(~,0)||§EWk for somed; > 0. Since(dy/2a;) — (mv/2/d) > 0 holds foray
sufficiently small, we have

1 N dy T |ag
L > P e + {G-,Oi —4ozG-,0xk}
o) > SlIVlige ; 20, 102C: O lEEc, ey g 1626 Ollsom

where we have again employed the Schwarz inequality. kthégerm of the sum reaches

its minimum with respect to the norm at(872/dyd*)a?a?. Returning to the original
functional and neglecting in the first term of the last estimate all contributions except the
one coming from the leftmost componentRf\ £, we see that there is a positigesuch

that

1 1 N
L) = JWell? + SI0elE o — v D efaf (2.26)
k=1

holds providedW| is sufficiently small.
To conclude the proof, we denotg := x; — 2a; — x1 + 2a; and employ the identity

N N N
ala? = Za%af + Z(a,f — a?)a? (2.27)
1 k=1

k= k=1

together with the estimate
1 5, 1,5 1 L —ar)?
2Vl = Jlel’? > o ZT‘

4N —~

If —y(af —a?)a? + (1/4N L) (ax — 1)? > 0 holds for allk = 2, ..., N, the bound (2.26)
reduces to

1 N
L) > SVl cyan —vei ) af (2.28)
k=1

On the other hand, suppose that the end-point values satistyo; = O(a;) asa, — 0
forke K C{2,...,N}. In view of (2.27) we have

1 > 1
LO) > Iy —vei Y af + 3 {W(ak —a)’ —y (e - a%)af} :
k=1 kek k

However, the last term i© (3", a?), S0 equation (2.28) is valid again with a smaller

positive coefficient in the last term. Sindg/|? > fogzal c1(x)?dx, the quantity of
interest is bounded from below by

L) _ [0 de —yafi o)
112 2" P mede
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The right-hand side is minimized by the functiop(x) = a1&*—*1+2%) which yields the
value («2/2) — y I (W)k; taking the minimum ovex we find

L@y)
Iy 112

> —y2I(W)2. (2.29)

O

3. Window-coupled layers

The setting of the three-dimensional problem is similar. We have a straight layer,
Y = R? x [—d,, di], and a setlW C R? which can be written as a finite union,
W = UY_, Wi, whose components are open, connected sets of non-zero Lebesgue measure;
without loss of generality we may suppose they are mutually disjoint. Then we define
H (dy, d>; W) as the Laplacian oh?(X) obeying the Dirichlet condition at the boundary of
¥, i.e.y = —d,, d1, as well as alR? \ W. This operator coincides again with the Dirichlet
Laplacian [RS4, section XII1.15] for the sliced layer, the two parts of which are connected
through the window setV. We use the same notation as abo¥e,= maxd,, d,} and
D := d;+d,. The non-trivial part of the symmetric casi, = d,, reduces again to analysis
of the Laplacian.?(%,), whereX, := R? x [0, 4], with the Neumann condition at window
part of the planey = 0 and Dirichlet at the remaining part of the boundary; this operator
will be denoted as byH (d; W).

Our main aim here is to prove a weak-coupling asymptotic estimate for a pair of layers
connected by a single window.

Theorem 3.10esd H (d1, do; W)) = [(r/d)?, o0). The discrete spectrum is contained in
((w/D)?, (r/d)?), finite, and nonempty providetly # #. Suppose further thav = 1
and W = aM for an non-empty open séi/ contained in the unit balB; ¢ R2. Then
odisc(H (d1, do; aM)) consists of just one simple eigenvaleéuM) < (/d)? for all a
sufficiently small, and there are positivg, ¢, such that

— exp(—cla_3) < e€(a) — (%)2 < - exp(—cza‘S). (3.1)

Proof. This is again based on variational estimates.
The upper boundh the symmetric casely = d», employs the trial functiony = F+nG,
where F(x, y) := f1(x)x1(y) again with

. Ko(r|x|)
= 1, ——~ 3.2
f1(x) mm{ * Ko(ka) } (3.2)
and
G(x,y) = xam (X)P1(x)R(y) (3.3)
where ¢\” is the ground-state eigenfunctionjp\”|| = 1, of the operator—A%M
corresponding to the positive eigenvaluga) = p1(1)a=2, and
g Vi(@y ye [0’ ;d]
R(y) = (3.4)

2(1 — y/d) exp(—3d+/pni(a)) y €[3d. d].

Using —x; = (r/d)?x1, a simple integration by parts, and the fact that the vector functions
V f1 and V¢§“) have disjoint supports, we can express the reduced energy functional
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L(y) = (HY, ) — (x/d)?||y||* as

2
_ 2 2 T 2 20 p/y2
L) =11V fillL2ge) + 17| nala) — Pl IR 20.0) — N INR N 7200.0

—20x}(0) f 9w 35)

where the negative term in the bracket can, of course, be neglected. The second and the
third terms on the right-hand side can be estimated in analogy with [EV1]:

i (D

@RI 200 = MR 200 < =5 — R+ 1)

for fixed e; > 0 and anya sufficiently small. In a similar way, the last term equals
—2nx1(0)Ca, whereC := [,, ¢{"(x)dx. Finally, the first term can be evaluated by means
of [AS, equation 9.6.26] and [PBM, equation 1.12.3.2]:

Koka)? |V fillZze = 27 [56%a* K1 (ka)? = 5(c%a® + D Ki(ka)?].
Using —K1(§) = Ko(§) + £71K1(¢) in combination with the asymptotic expressions
Ko§) = —In& + O, K1(§) =71+ O(In§), we find

27 (1+ &2)

Vv f1l|? < —
” fl”LZ(RZ) INnka

for a fixed e, anda sufficiently small. Substituting these estimates in (3.5) and taking a
minimum overn, we arrive at the bound
2r(1+e2) 2x,(0)2C? .

Inka 2+ e/
It remains for us to find a lower bound on
I IZ 2 19 17 sa = 21F (o = 2071 F I ca = 19 1150 — 2% — 202 R1IZ20.4)-
The last term iD(a), while the first can be expressed as

L) < — (3.6)

T
Ko(ka)?| F %5, = ma’[Ki(ka)? — Ko(ka)?] = 2+ O(@?Inka).

Using the asymptotic behaviour &, we find ||/ ||> > mk?(Inka)~?(1 — &3) for fixed
g3 > 0 and sufficiently smalk. Hence
L) «2Inka
< —
[l 112 7(1—e3)
whereE := 27 (1 + &5) and
_ 2x{(0)%c?
24 eV

Minimizing the right-hand side of (3.7) with respectipwe conclude that for fixed positive
€1, &2 andes € (0, 1) there is a functiory such that

LG _
12

asa — 0. The upper bound in (3.1) follows readily from (3.8); the extension to the
non-symmetric case is obtained as in [EV1].

(Da*Inka + E) 3.7

1+82 i e_2E/Du3 (38)

g(a) and  gl@)~ —3— o o
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Remark 3.21In fact, one could supposd = B; because the eigenvalue is pushed up if we
reduce the window to a circle contained M, and the bound obtained is non-optimal, as
in remark 2.2. In the rest of the proof veanbedM in a circle, leaving the question about
relations between the constants and the geomety ¢ more sophisticated methods.

The lower boundcan again only be proved in the symmetric case. We begin with
auxiliary results. When constructing the trial function component (3.2), we have implicitly
used the fact that the function&l: F(¢) = [°(¢'(1)? +m?¢ (1))t dt on C?([a, o0)) with
the condition¢ (@) = « and fixed positiva:, m and is minimized by

. _ Ko(mt)
$o: ¢o(t) =« Ko(ma)

as can easily be seen from solution of the appropriate Euler equation. Furthermore, a two-
dimensional analogy of the bound [EV1, equation (4.2)] is given byrtiedrichs inequality

[Ne, theorem 1.9]: if2 Cc R", n > 2, is a bounded domain with Lipschitz boundary, there

is a positivec such that

IVFIZ = cll 12 (3.10)

holds for everyf € H}(S2). The constant is, of course, easy to find for the citle- B,
in terms of the appropriate Bessel zetor jZ,a~2.
Repeating the argument of [EV1] and the previous section, we infer that one has to find
a lower bound oL (vy)/||v||? over all realy € L?(X), which areC?, radially symmetric,
and vanish at the boundary except in the window. We can again express gudh the
form of the series (2.12), where the convergence is uniformafpez a. The coefficients
¢, in fact depend only om := |x|. Moreover, in analogy with (2.22) we may restrict our
attention to trial functions with

(3.9)

/n2
a0 < len(ay 0L/ DV~ 1) (3.12)
Ko((y'r/d)\/n2 — 1a)
for n > 2. As before we introduce
ax1(y) 0<r<2a
F(x,y) = (3.12)
c1(r)x1(y) r>2a

with « := ¢1(2a), and divide the rest (x, y) = ¥ (x, y) — F(x, y) into

Gi(x, y) = (ca(r) — o) xa(y)
supported in the extended window regieng 2a, andG,(x, y) = G(x, y) + '(x, y) with

P, y) =Y cn(2a) xa(y).
n=2
We start estimating the reduced energy functional
7T\ 2
L) = IVl 416,12 = (5) 1612 - 20640 | G0 de (313
B,

from the ‘external’ contribution to the first ‘two-and-a-half’ terms:

2
L= 21Vl 2 (T 2
1= 2|| Wllisa T 1Gy1I7q p 1G7=a

o] 00 2
=7 ;/ﬂ (C;l(r)2 + 2(;) n®— 1)6‘,1(}’)2) rdr
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o) 00 2
T ;/a (c;(r)2 + 2(71;) c,,(r)z) rdr

e 27N Ki(mna/d) )
> ;cn(a) p m > 7 nzzncn(a) (3.14)

where in the last line we have used equation (3.9), evaluated the integral as in the first
part of the proof, and employed the inequalky(&) > Ko(&) which follows from the well
known integral representation [AS, equation 9.6.24]. Next we turn to

Ly = ||Va¥2cq = IV2Gall2cq, + VG2l sy (3.15)
By assumption(; vanishes at = 2a, so the first term can be estimated from (3.10) as

Cy Cy
IVG1lPes, > @nGluf@, = ;uGlnz (3.16)

where £ = j&l. Furthermore, introducing the window neighbourhdad:= B, x [0, a],
we have

C1
IVeGallc, = V2 G2, > L G122

Ci, ~ s 8C1A2 5C1, .,  8Ci _ 5
> EIIGIIQ&, > ?IIGIIQZH Z ?IIGzllgb - ?IIFIIQZ, (3.17)

for all a < d andé§ € (0,1]. The last norm can be estimated as in the previous cases
by combining the smallness of thg norm restricted to [0a] with the dominated decay
(3.11):

a o0 2
T3, = 4ra® /0 (ch@a)xn(w) dy
n=2

,1]+1

[a
< 8ra ( Z n”te,(a)? / Xn(9)? dy) Yo

n=2

o0

+8’m2< > ”Cn(a)Z/Oaxn(y)zdy>
2

2<n=[a"1]+

= K§((@ra/d)Vn? - 1)
2enlfaniz nKG((ra/d)Vn? — 1)

X

16wa® (272 o K3((2ra/d)v/n? —
< d<3dz +2§n=[zll’1]+2 nK§((ra/d)v/n? = 1) ) chn(a)
The sum in the bracket can be estimated as
oo K2((2ra/d)v/n? = 1) /00 K2((2ra/d)v/n? = 1) & < > K2(n&/d)
T2 nK2((majd)Vn? = 1) " Jor £K2((majd)vn2 —1) )1 EKG(rg/2d)

for a < +/3/2, and the integral on the right-hand side is convergent, beckyge ~
JT /2 €% asé — oco. Hence there is a positiv€, independent ofy anda such that

C o0
-5 ITI3, < Caa ) ney(@)?. (3.18)
n=2
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Combining the estimates (3.14)—(3.18), we arrive at

2 00
b4 2 Cl 2 8C1 2
Lr+h>a<—6Q>EJQW)+QJWN-+2ﬂWﬁm

d
which gives
Li+ L > —I|G1II + IIGzIIQ (3.19)

for somem > 0 and alla sufficiently small.
The norm ofG, is estimated as in the two-dimensional case [EV1]:

2n
IG 12y = 1G22, — 2 (216102, +d1G2(-, 0)112,)
which, together with (3.19), yields

Li+ Ly + G, )%, - ( > IG1Z,

C1 #n(mr+4
> G2, 12, —( ) 1G22, + <a2 ) 1G1112,

d?
2
m
+5;Mh%a —wa 0%,
co 2r
>(—>wxﬁwg
a d
—wcx 0l%,

for positiveco and anya sufficiently small; in the second step we have neglected a positive
term and employed lemma 2.5. Substituting from here to (3.13) and using the Schwarz
inequality

/ G(x,0) dx < [|G2(, O)ll,<av/7a
B,

we obtain
1 C
L(y) 2 IIV 1ﬂ||,>2a 20a x1(0)/7[|G2(-, 0)[lr<a + Z?IIGz(-, O)Hfga
2w’y (0)?
wvwmh——jf—wS

The first term on the right-hand side can be estimated from below by the first transverse-

mode contribution. The same applies|it¢||?, so finally we find
L) Ja ., ¢y(r)? rdr — (7 x1(0)%/co)a® c1(2a)2
12 = 2[57 cr(r)? rdr

In analogy with (3.9), one has to solve the appropriate Euler equation to check that the

right-hand side of (3.20) is minimized hy = ¢, for somex > 0, where

Ko(kr)

Ko(2ka)’

(3.20)

G (r) == c1(2a)
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Substituting in (3.20), evaluating the integrals, and taking the asymptotics for gmaé
infer that

L) mx1(0? 5 1-&
e ot ep” AT 1+82>

holds for any fixede1, &2 > 0 and all sufficiently smalk. It remains to find the minimum

of the right-hand side with respect o However, since it differs from (3.7) just by the

values of the constants, the argument is concluded as in the first part of the proof]

> —k?In(2ka) (

4. Conclusions

To make sense of the bounds derived in the above sections one has to take into account two
aspects of the problem. First of all, we have already mentioned that the discrete spectrum can
also be found numerically by means of the mode-matching method; a detailed description
of the two-dimensional case is given in$EV]. Although the method converges rather
slowly if the window is narrow, the results obtained for a single window clearly suggest
that the true asymptotics exist and are of the same type as our asymptotic bounds.

Further insight can be obtained from comparing our result with the well known weak-
coupling asymptotics for Schdinger operators in dimension one and two [BGS, Kl, Si].
The ground state of the coupled strips in the narrow-window case is dominated the lowest
transverse-mode component with long exponentially decaying tails and a local modification
in the coupling region. In a similar way, a link can be made between window-connected
layers and a two-dimensional Sdédinger operator. The comparison shows that the
attractive interaction due to opening a narrow window (in particular, by changing the
Dirichlet boundary condition to Neumann over a short segment of the boundary in the
symmetric case) acts effectively as a potential well of a depth proportional to the size of
the window.

Conjecture 4.1Let H(d1,d2; VW) be the operators described above. The ground-state
eigenvalue behaves for sm@V| as

2

7\? 1/ .
€(a) ~ (d) - dz(; CZ,k(v)a,f> dmX =2 (4.1)

2 N -1
e(a) ~ <Z> — ;exp{—(; 03,k(v)a,§> } dmX =3 (4.2)

wherev := d~1min{dy, d>}, andg, in the three-dimensional case is the scaling parameter
of the kth window.

The conjecture is based solely on the analogy described, and therefore it is difficult to say
more about the coefficients. The possibility that they may depend on the geometry of the
window-centre set fotv > 1 is not excluded; in the three-dimensional case the shapes of
the scaled windows may also play a role. We refrain from speculating about the nature of
the error terms.

On the other hand, we are convinced that the open ‘constant cross-section’ shape of
our regions¥ is crucial for the asymptotics. For instance, Jf is instead a bounded
planar region with the Dirichlet boundary in which we open a window (to another bounded
region the essential spectrum threshold of which is not lower) or a Neumann segment,
we conjecture that leading term in the ground-state shift is proportional tsghare of
the window width. Moreover, the same asymptotics are expected to be valid for higher
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eigenvalues provided the corresponding eigenfunctions are logaitynetricwith respect
to the window axis. In any case, proving such asymptotic properties represents an intriguing
mathematical problem.
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